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The effective time theory and linear-extrapolation method for predicting long term creep from tests of 
short duration developed earlier for amorphous polymers are generalized to semi-crystalline polymers. It 
is shown that the predictions are in good agreement with experiment. 
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INTRODUCTION 

In reference 1, methods were described for the prediction 
of the long term creep of amorphous polymers from tests of 
short duration. These methods were derived theoretically 
from the empirical kinetics of creep and physical ageing. 
This last factor plays a role because, during long term 
creep, the material ages and continuously stiffens. In 
other words, the creep properties change with time (age) 
and this effect has to be incorporated in the prediction 
methods. The mathematical problems could be solved 
and the resulting prediction methods were tested experi- 
mentally. It turned out that reliable predictions are 
possible for extrapolations of up to a factor of 100-1000 
on time scale. The methods were also generalized to long 
term stress relaxation and to dimensional instabilities 
(creep under the action of internal stresses) ~. 

In parts 1 and 2 of the present sequence of papers 2'3, 
we showed that semi-crystalline polymers such as PP, 
HDPE,  etc., are just as sensitive to physical ageing as 
the amorphous materials. Moreover, this ageing occurs 
below as well as above the conventional Tg of the 
material. This was explained by assuming a Tg distribution 
between a lowest value T L and a highest value Tg U (see 
Figure 1 of ref. 2). 

Since ageing was shown to be the key factor in solving 
the prediction problem for amorphous materials ~, the 
finding of similar ageing phenomena in semi-crystalline 
polymers prompted us to verify whether the same or 
similar prediction methods can be used for the semi- 
crystalline materials. This turned out to be the case and 
the results of the study are described in the present paper. 
We begin with a recapitulation of the behaviour of 
amorphous polymers and with a brief description of the 
prediction methods developed earlier 1. The generalization 
to semi-crystalline polymers is given next, together with 
the results of experiments undertaken to test the methods. 
As in references 2 and 3, we use the classification scheme 
of the four characteristic temperature regions: region 1 
for T < TL; region 2 for T ~  TL; region 3 for T L < T < T~ 
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and region 4 for T >  T~. As shown in reference 2, the 
creep and ageing behaviour is typically different in these 
four regions. For information about the materials studied, 
refer to reference 2. Full details about the experimental 
techniques have been given in reference 1. 

RECAPITULATION OF THE BEHAVIOUR 
OF AMORPHOUS POLYMERS 

Ageing and short-time creep 
An illustration of the creep behaviour of an amorphous 

glassy polymer (T< Tg) is given in Figure I. As shown 
earlier 1, we can distinguish between two different types 
of behaviour. 

Range I (short times or low temperatures). The creep 
properties are insensitive to age (time re) and they depend 
on the detailed chemical structure of the polymer. Specific 
molecular motions give rise to specific secondary retard- 
ation processes (Figure I). For example, an n-alkyl side 
chain gives a secondary process with a retardation time 
of about l s at -190°C (ref. 4). This process is only 
observed for n>3 .  In a material such as polyethyl- 
methacrylate (n=2)  it is absent. Many other specific 
retardation processes are known and are comprehensively 
described in the literature 5'6. 

Range II (longer times or higher temperatures). In this 
range, the behaviour is dramatically different. Some 
salient points include: 

1. The creep curve strongly depends on age and it shifts 
to the right when te increases. An example is shown in 
Figure 2. Often, the ageing effects are very large, larger 
than the effects produced by a change in temperature of 
40°C or more (cf. Figure 24 of ref. 1). 
2. Creep curves measured at different temperatures can 
be superimposed by horizontal and vertical shifts in a 
double logarithmic (log J versus log t) diagram (see 
Figure 3). This implies that the shape of the log J versus 
log t curve is independent of temperature (and age, point 
1). 
3. The shape of the log J versus log t curve hardly depends 

0032-3861/89/050799-16503.00 
((3 1989 Butterworth & Co. (Publishers) Ltd. POLYMER, 1989, Vol 30, May 799 



Creep in semi-crystalline polymers." L. C. E. Struik 

t0"8 

10"9  

- creep compliance 
](t), m~lN 

T ga_nge.~.I 

secondary_ 
retardations 

~e ~"~  

Oange,.,,~ / t o g a _ /  

dpplicaOilil ify of Eq.(t) ~- 

~= log t 

Figure 1 The general appearance of the creep curve of a glassy polymer measured 
at two times, t, and t ' ,  elapsed after quenching from above T~ to measuring 
temperature T <  T~. For details, see text 
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Figure 2 Small-strain tensile creep curves of rigid PVC quenched from 
90°C (i.e. about 10°C above Tg) to 40°C and kept at 40+0.1°C for a 
period of 4 years. The different curves were measured for various 
values of the time t e elapsed after the quench. The master curve gives the 
result of a superposition by shifts which were almost horizontal. The 
shifting direction is indicated by the arrow. The crosses refer to another 
sample quenched in the same way, but only measured for creep at a 
t= of 1 day. Reproduced from reference 1 with permission 

on the specific chemical structure. It is the same for PS, 
PVC, SAN, etc. (cf. Figures 33 and 34 of ref. 1) and the 
creep can be described by the empirical formula: 

J( t )=d o e (t/'°)~ 7,-, 1/3 (1) 

where log J0 and log to correspond to the vertical and 
horizontal shift factors in Figures 2 and 3. The constancy 
of 7 expresses the fact that the shape of the creep curve 
(log J versus log t) does not change with the chemical 
structure. It should be realized that equation (I) only 
holds for the onset of the glass-rubber transition. For 
temperatures at or above T 8, equation (1) is no longer 
valid (see later). 
4. At temperatures sufficiently below Tg, the effect of 
temperature on creep is surprisingly small. Actually, 
parameter to in equation (1) varies linearly with T and 
not with exp(H/RT) as is usual (Arrhenius behaviour). 
In fact, t o is proportional to T g - T  and therefore the 
log at versus T curve flattens at low temperatures (see 
Figure 4, loga t is the thermal shift log[to/(Tr)/to(T)] 
where Tr denotes some reference temperature and t~ is 
taken to be the same at all temperatures). The origin of 
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Figure 3 Small-strain torsional creep of rigid PVC quenched from 
90°C to various temperatures. For 50°C, the curves are given for t e 
equals 0.2, 0.6, 2, 5.4, and 16.8h. These curves can be superimposed 
by almost horizontal shifts. The master curve is given by the circles 
and dots. The curves at different values of t= for other temperatures 
are also superimposable, so we have only given the curves at a t~ of 
16.8h. By horizontal and vertical shifts, these curves at different 
temperatures can also be superimposed. The final master curve is given 
for a temperature of 20°C. The scatter around it is less than 1%. 
Reproduced from reference 1 with permission 

this non-Arrhenius behaviour is discussed in Section 4.10 
of reference 1. 
5. Shift log a produced by isothermal ageing (see Figure 
I) often varies linearly with log t~ (cf. Figure 25 of 
reference I), which implies that the double-logarithmic 
shift rate/~ remains constant: 

/~ = d log aid log t~ = constant (2) 

This also implies that (see equation 1): 

to(te) = to(t~r)(te/t~,)U (3) 

where te, is some reference value of re. 
6. The ageing kinetics hardly depends on the type of 
polymer. Shift rate/~ is about unity for the temperature 
range of the type II behaviour. Usually, this range is 
bounded by Tg at the upper side and the temperature T~ 
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Figure 4 Effect of temperature T on ageing and creep of an amorphous  
polymer quenched from To > T s to measuring temperature T <  Tg. Shift 
rate ~ is defined by equation (2). Log a r is the (thermal) shift between 
creep curves measured at different temperatures but at a constant ageing 
time t~. l o g  aT is taken positive for an acceleration. T B is defined in 
the text. Reproduced from reference 2 with permission 

of the first secondary transition at the lower side (Figure 
4). The typical difference with range I is that in range II 
there is little effect of chemical structure with a large effect 
of age. 

METHODS TO PREDICT LONG TERM CREEP 

We will now outline the long term creep theory developed 
in Chapters 10-12 of reference 1. For details refer to the 
original publication. To begin with, we have to distinguish 
between two types of tests yielding two types of properties. 
In a short-time test we keep testing time t short compared 
to the ageing time, t~, at the beginning of the test (e.g. a 
1 h test at a t~ of 100 h). The ageing during testing can 
be neglected (cf. equation (3)) and we obtain the so called 
momentary or short-time properties. Examples are the 
creep data shown in Figures 2 and 3. Momentary creep 
compliances are denoted by J ( t  e, t) (shear) or F(t~, t) 
(uniaxial extension). In a long term test, testing time t 
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becomes much longer than the t~ at the beginning of the 
test. There is considerable ageing during testing and we 
obtain the so called long term properties. For creep, the 
long term compliances are denoted by J(to, t) or g(t,, t). 
Note that the distinction between long and short term 
is not based on the absolute value of testing time t, but 
on the ratio t/t~ (e.g., a 1 year test at a to of 50 years 
yields the momentary properties). 

There are large and fundamental differences between 
momentary and long term properties. For example, 
Boltzmann's superposition principle and the linear visco- 
elastic theory (which is based on that principle) do not 
apply to long term phenomena, even for infinitesimally 
small strains (the explicit time dependence of the properties 
due to ageing violates the superposition principle). By 
using the concept of effective times, the linear viscoelastic 
theory can, however, easily be generalized to ageing 
conditions. Further, most of the results mentioned in the 
previous section only apply to momentary properties. As 
will be seen later on, the long term compliance J(t¢, t) 
does not obey equation (1). Moreover, time-temperature 
superposition is impossible for J. 

An illustration of the differences between short and 
long term compliances is given in Figure 5. Figure 5a 
shows momentary creep curves (t~ = 2 h) at 20-70°C. As 
discussed previously, these curves can be superimposed; 
the resulting master curve is given for a temperature of 
20°C. Similar master curves are given at 40-65°C by 
dashed lines. It is important to understand the proper 
meaning of these master curves. The one at 20°C was 
derived from short-time data (no simultaneous ageing) 
at 20-70°C. It seems logical to assume that this master 
curve gives the momentary creep compliance at 20°C and 
te = 2 h, i.e. the creep compliance that would be observed 
when, immediately after loading at t~ = 2 h, the ageing 
process had stopped and the creep would develop 
according to the properties at t~ = 2 h. This means, the 
master curve is a hypothetical creep curve. It can be 
determined unambiguously by time temperature super- 
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Figure 5 Small-strain tensile creep of rigid PVC. (a) Short-time tests (t < 1000 s) at a t e of 2 h after quenches from 90"C 
to various temperatures (t/te <0.14). The master curve at 20°C was obtained by time temperature superposition. The 
dashed curves indicate the master curves at other temperatures. (b) Long-term tests (t < 2.106 s, t~ =0.5 h, t/t~ ~ 1100). 
The dashed lines are the master  curves at 20 and 40°C for a t e of 0.5h. They were derived from the diagram in (a). 
Reproduced from reference 1 with permission 
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position of the data at 20-70°C but it cannot be measured 
at 20°C. 

The master curves at 20 and 40°C are reproduced in 
Figure 5b, for a t= of 0.5 h (dashed curves). These are 
compared with the actual long term creep curves (full 
lines) and we observe that the actual creep is much less 
than as predicted by the master curves. The reason will 
become clear: during the actual creep process, the 
material ages and continuously stiffens; therefore its creep 
will be less than expected from the momentary compliance. 
Figure 5b also clearly reveals the impossibility of time- 
temperature superposition for long term creep (the slope 
of the long term part of the curves increases with 
temperature) and the inapplicability of equation (1). (The 
curves are rather flat and show a small negative curvature 
at long times. Equation (1) predicts a positive curvature.) 

In view of these results the first conclusion must be: 
the long term creep cannot be predicted by a simple time- 
temperature superposition of short-time data. Although 
the superposition technique works perfectly (Figure 5a), 
the resulting master curve gives the wrong information 
because the simultaneous ageing, which strongly affects 
long term creep, is not taken into account. 

The simultaneous ageing effects can be described by 
the effective-time theory, originally developed for non- 
isothermal viscoelasticity 7's. This theory considers the 
case that the material properties are influenced by 
changes in temperature T only. Ageing effects are omitted 
for the moment. The basic assumption in the theory is 
that of thermo-rheological simplicity 9, i.e. the change in 
temperature only produces a shift of the creep curve along 
the logarithmic time scale without change in shape. In 
other words, all retardation processes contributing to the 
creep are accelerated (heating) or decelerated (cooling) 
by exactly the same factor. Let us take some temperature 
Tr as reference temperature. Let a[T(t), Tr] be the 
acceleration factor and Jr(t) the compliance at Tr (ageing 
effects are not taken into account here, see below). Time 
t is taken zero at the moment of loading (by stress ~o). 
Consider now, at an arbitrary temperature course T(t), 
the time interval between t and t +dt .  During this interval 
all processes run a(t) times faster than in the reference 
state at Tr. Consequently, the interval dt at temperature 
T(t) is equivalent to an effective time interval d~. at the 
reference temperature Tr: 

d2=a[T(t), T~] dt (4) 

Similarly, the interval between t--0 and time t is 
equivalent to an effective time 2 at T~ given by: 

2 = a(~) d~ (5) 

where ~ is an integration variable on the real t-time scale 
and where a(~) denotes a[r(~),  T~]. 

The word equivalent used previously means that the 
creep strain s(t) under non-isothermal conditions is given 
by: 

s(t) = aoJ~[2(t)] (6) 

So, if the temperature course T(t) is known together with 
the acceleration function a[T, T~], the effective time 2 can 
be calculated as a function of t (equation 5). Using 
equation (6), we can then express the non-isothermal 
creep in terms of the isothermal compliance at T~. 

This recipe can directly be applied to the long term 
creep problem, because ageing causes similar simple shifts 

along the logarithmic time scale (see Figure 2), as do 
changes in temperature for materials which behave 
thermorheologically simply. To elaborate this idea, we 
consider a creep test started at an elapsed time t=. As 
reference state, we take the moment of loading (elapsed 
time re). So, Jr defined above is identical to the momentary 
compliance J(t=, t). The acceleration factor follows from 
equation (3). At creep time t, the elapsed (ageing) time 
has increased from t= to t=+t, so a(t) is given by: 

a(t)=( t~ ~ (7) 
\ t e + t /  

Because ageing decelerates creep, a(t) will be smaller than 
unity. Applying equation (5) we find: 

2(0 = t= In[1 + t/t=] (8) 

if/~ = 1 and 

2(0 = t± [(1 + t/t=) ~ -  1] (9) 

if 0 < # < 1 where: 

0 < ~ = 1 - # < 1  (10) 

Using equation (6) and writing J(t=, t) for the long term 
compliance s(t)/ao, we find: 

Y(t=, t) = J[te, 2(0-1 (11) 

Thus, the prediction problem has been solved, i.e. we 
have found an expression of J in terms of momentary 
compliance J. The practical application is performed in 
three steps: 

1. We determine the momentary compliance J(t=, t) at 
the temperature of interest by the time-temperature 
superposition method shown in Figure 5a. 
2. Next, we determine shift rate # from short-time tests 
at T for various values of ageing time t= (cf. Figure 2); 
/~ is found from the horizontal shifts of the creep curves 
by means of equation (2). 
3. Finally, we calculate 2 from t by means of equations 
(8) or (9) and determine the long-term compliance Y(t=, t) 
by means of equation (11). 

Table 1 gives the 2-t relationships according to equations 
(8) and (9). 

The above method is described in detail in Chapter 11 
of reference 1. It has been checked by experiments on 
rigid PVC (see Figure 114 of reference 1) and it proved 
to yield reliable predictions for extrapolations of up to 
a factor of 100-1000 on the time scale. 

On the basis of the theory given above, we could also 
derive a linear-extrapolation method. Such a method is 
already suggested by the data shown in Figure 5b: the 
long term creep curves are rather flat and extrapolations 
over 2-3 decades do not seem to lead to serious 
errors. The extrapolation errors were analysed theor- 
etically as follows: we substituted the general formula 
(equation 1) for momentary creep into equation (11). It 
was found that the shape of the long term creep curve is 
determined by only two parameters, viz. the shift rate/~ 
and the value of to (see equation (1)) at ageing time t= 
(start of creep test). Next, we varied these two parameters 
over the ranges which will be encountered in practice, 
and calculated the errors in linear extrapolations over 2 
and 3 decades in a J versus log t (semi-log) and a log J 
versus log t (double-log) diagram. The conclusion (Section 
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Table I Relation between real creep time t and effective creep time 2. The table, calculated using equations (8) and (9), gives 2/t e for various values of/l 

/~ = 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

t/te 

1 0.770 0.757 0.743 0.730 0.718 0.705 0.693 
2 1.301 1.264 1.229 1.194 1.161 1.129 1.099 
4 2.069 1.981 1.899 1.820 1.746 1.676 1.609 
8 3.111 2.928 2.759 2.603 2.457 2.322 2.197 

10 3.510 3.285 3.077 2.886 2.710 2.548 2.398 
20 4.976 4.563 4.192 3.859 3.559 3.288 3.045 
40 6.822 6.122 5.508 4.970 4.497 4.081 3.714 
80 9.124 8.000 7.041 6.221 5.518 4.915 4.394 

100 9.977 8.681 7.584 6.655 5.865 5.191 4.615 
200 13.029 11.061 9.441 8.1 04 6.995 6.073 5.303 
400 16.796 13.900 11.581 9.716 8.210 6.989 5.994 
800 21.439 17.280 14.04 1 11.507 9.515 7.939 6.686 

1000 23.152 18.499 14.909 12.125 9.955 8.252 6.909 
2000 29.269 22.753 17.868 14.183 11.386 9.248 7.601 
4000 36.802 27.813 21.267 16.466 12.920 10.279 8.294 
8000 46.077 33.831 25.172 19.001 14.565 11.346 8.987 

10000 49.498 36.001 26.548 19.874 15.119 11.698 9.210 
20 000 61.709 43.569 31.239 22.782 16.922 12.816 9.904 
40 000 76.742 52.569 36.628 26.009 18.854 13.973 10.597 
80 000 95.251 63.272 42.818 29.589 20.925 15.171 11.209 

11.2 of ref. 1) was that the extrapolation can best be 
performed in a semi-log diagram and that the errors 
remain below 10-20% for extrapolation factors up to 
1000. The conditions are that / t  should be close to unity 
( 0 . 8 < p < l ) ,  that T should not be too close to Tg and 
that the creep time t, at which the extrapolation starts, 
is larger than t, (it is only for t > te that long term creep 
curves become more or less straight, see Figure 5b). Full 
details of the linear extrapolation method are given in 
Section 11.2 of ref. 1. A simple treatment, showing that 
the linearity of f versus log t is basically due to the ageing 
effects, is given in reference 10. 

THE LONG TERM CREEP OF 
SEMI-CRYSTALLINE POLYMERS 

We will now consider whether the methods described 
previously can be applied (or generalized) to semi- 
crystalline polymers. As stated in the introduction, we 
will treat the regions 1-4 one by one. The theoretical 
results will be compared with experimental data obtained 
on the materials described in reference 2. Details about 
the experimental techniques can be found in reference 1. 

Region 1 T < T L 
Below T L, the ageing and short-time creep behaviour 

of a semi-crystalline polymer is similar to that of an 
amorphous material 2. We therefore expect that the 
prediction methods described earlier can be applied 
without modification. 

This was verified by measurements on PET (37) (for 
material code numbers, see ref. 2). Some of the results 
are given in Figures 6 and 7. Figure 6 pertains to the first 
prediction method of the previous section. From short- 
time tests at 40, 50 and 60°C (tests of 1024s), we 
determined the master curve for the momentary com- 
pliance at a t, of 0.5 h. Using the #-value of 0.80, given 
in Figure 22 of ref. 2, we calculated the long term creep 
(crosses in Figure 6). Obviously, the agreement with the 
experimental long term creep curve (circles) is excellent. 

The other prediction method described earlier was 
based on the fact that for creep times t >> te, the long-term 
creep curves become almost straight. As seen in Figures 
6 and 7, this also happens for PET, which demonstrates 
that the linear-extrapolation method can be applied 
without modification. 

The data in Figures 6 and 7 suggest that at very long 
creep times (t >> te), the creep curves measured for different 
values of t e tend to merge. For example, Figure 7 suggests 
that the curves for t¢ = 1 and 24 h merge at t = 108-109 s 
(3-30 years). This can be explained theoretically (see 
Figure 109 of ref. 1). 

Region 2 T ~ T L 

In regions 2 and 3, the behaviour of semi-crystalline 
polymers is more complicated than that of amorphous 
glassy polymers (for details see ref. 2). The horizontal 
shifts due to ageing are now accompanied by substantial 
vertical shifts which are downwards in region 2 and 
upwards in region 3. Moreover, the short-time creep 
curves no longer obey equation (1) and, at least in region 
3, time temperature superposition of short-time creep 
data is no longer possible. Consequently, much of the 
basis upon which the methods of the previous section 
were developed has disappeared. We will now show, 
however, that, with minor modifications, both methods 
can still be applied to semi-crystalline polymers. 

Theory. We start from the simplifying assumption 
made in ref. 2 that the (total) creep compliance J(to, t) 
can be written as the sum of a contribution Jl(te, t) of 
more mobile regions and a contribution J2(te, t) of the 
less mobile ones: 

J(t~, t )=Jx(t  ~, t)+ J2(t ~, t) (12) 

Both contributions are affected by ageing in the usual 
way: they are shifted along the logarithmic time scale at 
shift rates/~1 and/~2, i.e.: 

J, ( te ,  t ) = J l ( t e ,  , ( te , / te )u ' t )  (13) 

J2 ( t e ,  t )  = J2 ( t e , ,  (te,/t~)u2t) (14)  

in which te, is some reference value of t~. 
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Figure 6 Long term small strain torsional creep (©) of semi-crystalline PET (37) 
at 0 and 40°C after quenches from 80°C. The momentary compliance at 40°C 
(t,=0.5 h) was obtained as described in the text; from this curve the long-term creep 
(+) was calculated using equations (8)-(I 1 ) 
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Figure 7 Long term tensile creep at small strains of PET (37), quenched from 120 to 20°C 
and tested after te of 1 and 24h 

Shift rates ]2a and /2 2 are not  equal; in region 2 we 
have 2: 

0 < ]21< ]22 "~ 1 (15) 

Further ,  the time dependence o f J  2 is much less than that 
of J1. Actually, J2 is only a correction term necessary to 
explain the (downward)  vertical shifts (cf. Figure 6 of ref. 
2). 

Let us now elaborate the picture of Figure 6b of ref. 2. 
For  abbreviation,  we write 

Jl(te,,  t) = q~(t) (16) 

Jz(ter, t ) = A  + Cln t (17) 

in which A and C are constants.  
Combining equations (12), (16) and (17) we obtain:  

J(te,, t)=c~(t)+ A + Cln t (18) 

For  t ,>te,  we have: (cf. equat ions (13)-(14)) 

Jl(t¢, t )=  ¢[(tejt,)u't] (19) 

J 2(te, t) = A + C ln[ (te,/t=)"2t] (20) 

Because of the logarithmic form of J2 we can change 
equat ion (20) into: 

J2(te, t) = A + C ln[(te,/te)"t] + C ln[ (t=,/te) "~-' ']  (21) 

Equat ions (19) and (21) yield: 

J (t e, t) = (a[ (t~r/t~)"t ] + a + C ln[ (t¢r/te)u't ] 

+ C(#2 - ]21) ln(ter/t¢) (22) 

In view of equat ions (16)-(18), this is identical to: 

J( t  e, t) = J(te, , (te~/te) "xt) -- C(]22 -- #l)ln(t~/te r) (23) 

Equat ion (23) says that  a change in age from t=r to t e > ter 
causes two effects: 

1. A horizontal  shift of the total creep curve. The 
magnitude of the shift is determined by horizontal  shift 
rate ]21 and is given by ]21 ln(tJt=r). 
2. A downward  vertical shift given by C(]22 - ]21) ln(tJt,,). 
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This is exactly the behaviour found experimentally 2 
which justifies the treatment (equations 12-14). The 
vertical shift rate B defined by equation (7) of ref. 2 is 
found a s :  

B = - 2"303(#2 -- #1)C (24) 
d(t*, t*) 

Note that B is a relative shift rate (relative change in 
compliance per tenfold increase in to). It is for this reason 
that the vertical shift 2.303(#2-#1)C is divided by the 
compliance d(t*, t*) at some arbitrarily chosen set of 
values of t¢ and t. These values (t* =3 h and t*= 1024s) 
are given on page 1529 of ref. 2. Note further that factor 
2.303 = In(10) originates from the change from log to ln. 

For the long term creep we now can proceed as follows. 
The assumption expressed by equation (12)-(14) 'saves' 
the effective time concept. This concept can be applied 
to dl and J2 separately and we find: 

J(t~, t) = J t( t  ~, t) + J2(t ~, t) (25) 

where: 

Yl (to, t) = dl[tc, 21 (t)] (26) 

Jz(te, t) = dz[t,, 22(t) ] (27) 

Reduced times 21 and 22 can be found from equations 
(8)-(10) by using the values #1 and #2 respectively. 

Equations (25)-(27) yield: 

J(te, t)=Jl[t~, 21(t)] + J2[te,  ~2(t)] (28) 

We change this into: 

f(te, t )=dl[t , ,  21(t)] +Jz[t,,  21(0] + ~  (29) 

where: 

=d2[t  e, 22(t)]-d2[t~, 21(0] (30) 

Instead of equation (29) we can write: 

J(te, t)=-J[te, 21(t)] + q s  (31) 

The first term in equation (31) is the long term 
compliance as calculated from the total momentary 
compliance (d l+  d2) at ageing time te by using the shift 
rate #1 of all only. According to equation (23), #z follows 
from the horizontal component of the shift of the total 
creep compliance. The error introduced by the approxi- 
mation is given by ~ .  

Error qs can be estimated as follows. Using equations 
(20) and (30) we find: 

q u = J z [ t  e, )~2(t)]-J2[te, 21(t)]=Cln(22/)q) (32) 

Since #2 >#1, 42 will be smaller than 21 (Table 1) and 
will be negative. Its absolute value ]~] increases with 
increasing 21/22 ratio, i.e. with increasing difference 
between #z and #2 (see Table I). To get the maximum 
error, we take #2 = 1. Using equations (8)-(10) and (24) 
we then find for the relative error R = [~FI/f(t o, t): 

R J(t* , t*)  B l n ~ l n ( l + t / t ~ ! ]  
- = ( 3 3 )  

J(t , , t)  2.303e k ( l + t / t e ) = - l J  

where ~= 1 -#1 .  
The error according to equation (33) can easily be 

estimated. First, the t value in f(t~,t) will be (much) 
greater than the t* value (1024s) in d(t*, t*). Conse- 
quently, ratio J(t*, t*)/f(te, t) can be taken < 1 provided 
that t, is not much smaller than t~* = 3 h. Evaluating the 
logarithmic function in equation (33), we then find that 

Creep in semi-crystalline polymers: L. C. E. Struik 

for O<c~< l  and l< t / te<103: 

R<__2B (34) 

According to Figures 19-25 of ref. 2, rate B in region 2 
generally remains smaller than a few percent. Conse- 
quently, the error • in equation (31) can safely be 
neglected, i.e. 

Y(te, t)~- J[t~, )~,(t)] (35) 

So, we can calculate the long term creep from the total 
momentary creep curve (i.e. the experimental (master) 
curve) and from the measured horizontal shift rate #1. 
In fact, this implies that the vertical shifts can be neglected 
in the calculation of J, which means that the first 
difference between amorphous and semi-crystalline poly- 
mers (vertical shifts) does not affect the prediction 
method. To apply equation (35), we simply take the # 
values of Figures 19-25 of ref. 2 (this # value is in fact 
#1) and calculate )~1 with equations (8)-(10) or with 
Table I. 

The next problem is to find the momentary compliance 
d(te,£) for time ()~t) values much larger than t~. As 
with amorphous polymers, J(t~, t) cannot be measured 
for t>>t~. Further, the time temperature superposition 
method, used for amorphous polymers, cannot be used 
here. It is useless in region 3 and of only limited value 
in region 22. So, we have to design some other technique. 

The key to the solution of this problem is the fact that 
in regions 2 and 3, the creep will be dominated by those 
amorphous regions which are near their glass-rubber 
transition 2. We therefore return to amorphous polymers 
and consider their creep behaviour at and just below Tg. 
An outline is given in Figure 8. At short times, we have 
the onset of the glass-rubber transition and for this part 
of the curve we can use equation (!). In the central part, 
equation (1) is invalid (dashed line). We have a region 
of constant double logarithmic slope, m~, (cf. Figure 4 
of ref. 2), and J(t) can be described by the equation 

J( t )=Dt m' (36) 

where D is a constant. This constant slope region is 

100 

10 

3(t)/3o 
I i 
I 

/ 

3{t)'= J°e"~/t°fl/3 I" / 
ml 

I 

continuation 
Jby 

] ( f )=Dfml  

• . t / to  
1 
~0 -2  0 10 2 tO 3 

Figure 8 Creep of amorphous polymers in the onset and central part 
of the glass-rubber transition. Jo denotes the glassy compliance 
(secondary relaxations are neglected, see Figure 2). The creep obeys 
empirical equation (1) at short times and empirical equation (36) in 
the central part. For details see text 
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several decades in time wide: it covers the region in which 
J(t) increases to about 100 times the short time value 
(see Figure 4 of ref. 2). Slope m 1 is about 0.5. For the 
three polymers of Figure 4 of ref. 2 we have mt =0.57 
for PMMA, 0.53 for PUR and 0.58 for PVC. 

In Figure 8, the creep is given for two values of slope 
m~. The turnover from equation (1) to equation (36) is 
taken at the time, t~, where the double log slope according 
to equation (1) equals m 1. Differentiation of equation (1) 
yields: 

d In J/d In t = ~(t/to) ~ 7 ~ 1/3 (37) 

So the turnover time tl is given by: 

?(tl / toY=ml 

o r  

t Jto = (ml/?) 1/~ (38) 

A plot of the semi-logarithmic creep rate dJ/d In t, 
normalized by dividing by Jo is given in Figure 9. The 
short-time part of the curve creep obeys equation (1), i.e. 

dJ(t)/Jo/d In t = 7(t/to) ~ exp[(t/to) v] ? ,-~ 1/3 (39) 

The right half of the curves obeys equation (36), i.e. 

dJ(t)/d In t = mlDt m' (40) 

The two curves were matched (turnover point) as 
described before. This procedure leads to an artificial 
discontinuity in the slope of these curves, due to the 
arbitrary choice of the curve matching. As in Figure 8, 
the right half of the curves are given for two values of ml. 

Figure 9 shows that for amorphous polymers, the 
logarithm of the semi-logarithmic slope s, defined by 

s = dJ(t)/d In t (41) 

increases with In t roughly in a linear way over the whole 
region of the onset and central part of the glass transition. 
This is shown in Figure 9 for the case of ml =0.5. The 
dashed straight line matches the full curve to within 20% 
over the whole time range (lO-2<t/to < 10+2). 

10 2 

I0 r 

10 0 

I0-I 

10-2 

d J l t I / ] o  
d in  t 

I 

• Eq. (11 

~. t/t o 

10- 2 I0 0 10 2 10 4 

Figure 9 Semi-logarithmic creep rate versus t/t o for the two creep 
curves of Fiqure 8. The dashed line gives a straight-line approximation 
for m~ =0.5. For details see text 
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Figure 10 Semi-logarithmic slope (tensile creep), expressed as g ( t ) -  
F(t/2), for PP (43) quenched from 120 to 0 and 20°C, and tested after 
elapsed time t= of 10 days (8.64 x 105 s). The data are derived from 
those given in Figure 17 of reference 2 

As can easily be verified, the approximate linearity of 
In s with In t implies that J(t) can be written as: 

J(t) ~ c + kt" (42) 

in which c and k are constants. Instead of equations (1) 
and (36), equation (42) is applicable over the whole range 
(onset plus central part). 

Let us now apply these results to the semi-crystalline 
polymers in region 2. The creep is dominated by that 
of the amorphous regions which are close to their glass 
transition. So, we expect that slope s will vary linearly 
with t in a log-log plot. Because for semi-crystalline 
polymers the glass transition is more smeared-out than 
in amorphous polymers, we also expect that the slope, m, 
will be smaller than in Figure 9. This is exactly the 
behaviour that has been found. An example for PP is 
given in Figure I0 in which the semi-log slope is given 
as F(t)-F(t/2), ,~ln 2 x dF/d ln  t. More data on PP and 
HDPE are given in Figure 11. 

These results suggest that we can find the momentary 
compliance J(t=, t) for t >> t= by extrapolation of plots such 
as given in Figures 10 and 11. This in fact implies that 
we extrapolate according to equation (42) whilst the 
constants c, k, and m are determined from the J(t,, t) 
data for t < t,. 

Predictions based on the calculation of effective times. 
We will now apply the theory of the previous section to 
predict the long term creep of semi-crystalline polymers 
in region 2. For illustration, we will use the data on PP 
given in Figure 12. 

The prediction method comprises four steps: 

1. Shift rates # and B are determined from short-time 
ageing tests. For PP (43) at 20°C, we obtain/t  =0.70 and 
B= -3%/decade (cf. the data on a slightly different PP 
in Figures 11 and 21 of ref. 2.) The pertinent te values 
varied from 0.35-6 h. 
2. The short-time part of momentary compliance F(te, t) 
is measured directly. In Figure 12, it is given (t~=0.82) 
by the open circles and the heavy curve. The data points 
at 512-2048 s (t comparable with t~) were corrected as 
described on page 140 of ref. 1. 
3. The long time part of F(t~, t) (i.e. for t>>t~) is found 
by plotting F(t)- F(t/2) versus t in a double-log diagram. 
For PP (43), the data are given in Figure 11 and in the 
insert of Figure 12. The dashed line (Figure 11) is the 
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extrapolation, it is given in Figure 12 by the full curve. 
4. The long-term compliance F(to, t) is determined by 
means of equation (35). The ).-values are found from 
equations (8)-(10) with the/z-value found under point 
(1). As shown in Figure 12, the prediction agrees perfectly 
with experiment. 

Figure 12 also shows the creep at t= = 50 h, which was 
predicted as follows. From the/~ and B values given in 
the caption to Figure 12, we know how to shift the 
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Figure 11 J ( t ) - J ( t / 2 )  or F ( t ) -F ( t / 2 )  versus time t for the tests dealt 
with in Figures 12-14. For details see text 
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momentary compliance F(t=, t) when t~ is taken to be 50 
instead of 0.82 h. Performing this shift, we obtain F(te, t) 
at 50 h (full curve), and applying equations (8)-(10) we 
can again calculate the long term creep. (Note that the 
B value is only used to shift the momentary creep curve 
from t¢=0.82 to its position at te=50h;  the B value is 
not used in the calculation of F from F). Similar results 
are given in Figures 13, 14 and 15. In Figure 13, we have 
indicated the maximum variations in the prediction 
which result when the lines in Figure 11 are drawn 
through the points at 40°C in different ways. The 
variations are clearly smaller than a few percent. 

Figures 12-15 show that the prediction method works 
satisfactorily in all cases. Even for extrapolation factors 
of about 1000, the errors are less than a few percent. 

Linear-extrapolation method. Figures 12 t5 reveal that 
the long term creep curves are more or less straight for 
t >> re. This suggests that the linear extrapolation method, 
developed for amorphous polymers 1, can be applied 
without modification. To find the extrapolation errors, 
we used the same technique as in Section 11.2 of ref. 1, 
now, however, on the basis of equation (42). Using 
equations (8)-(10), we find: 

J(t) = c + kt" 

if/~= 1 

i f # < l  

Y(t)=c +kt~ ln"(1 +t/te) 

(43) 

(44) 

J(t)=e+k(tjT)"[(1 +ti t , )  =-- 13" (45) 

= 1 -/~ (46) 

For simplicity, we write J(t) instead of J(t e, t). 
We now consider the linear extrapolation 

i*(t)=3-(tl)+(dY/dln t),, ln(t/tl) (47) 

where t > t l; tl is the maximum testing (creep) time and 
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Figure 12 Small-strain tensile creep of PP (43) at 0.82 and 50h after a quench from 120 to 20°C. For 
explanation, see text. (3 , momentary creep curve; . . . . . . .  , long-term creep predicted from 
the momentary creep curve using # = 0.70; O,  actual long-term creep. The insert reproduces the pertinent 
data (PP, 20°C, tensile creep)from Figure 11 
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Figure 14 As Figure 12, but for the torsional creep at 20 and 40°C. 
The crosses refer to duplicate tests. The ,u and B values were as in 
Figures 12 and 13 (for the use of B see text). The momentary creep 
curves ( - - - O - - )  were obtained using the data from Figure 11 
(torsional creep, PP, 20 and 40°C) 

t/tt = a = extrapolation factor. This extrapolation factor 
a should not be confused with acceleration factor a. 

So, we find ,7(0 from J(tl)  by a linear extrapolation 
according to the slope at tt (slope on log time scale). 

The relative extrapolation error q is given by 

J*(t)-J(t) J*(t)-J(t) J( t)-c  J( t)-c  
q= J(t) - J ( t ) - c  x J ( t ) = r  f(t~)- (48) 

in which r is defined by 

2 * ( t ) - c  
Q = l + r =  _ (49) 

J ( t ) - c  

According to equations (44) and (45), we have: J ( t )>c .  
Therefore equation (48) shows that q < r. So, to find the 
maximum errors, we only have to consider quantity 
r =  Q - 1 .  Substitution of equations (44) and (45) in (49) 
yields: 

" m l n a  x } Q ) ' l n ( l + x ) ~  ~'14 1 
= [ l ~ + ~ x ) J  ( ln(1 + x) ~ - x  if/~ = 1 (50) 

( l+x)'-]  
~ m l n a  ~xx} #<1  

1 - ( I  +x)  -~' 1 

(51) 

where 

x = t l / t  e e = l - p  Q = l + r  (52) 

Figures 16 and 17 give r = Q - 1 as a function ofx = t t / t  ~ 
for various values of p (0.6-1.0) and m (0.2, 0.3 and 0.4). 
The extrapolation factor a is 100 in Figure 16 and 1000 
in Figure 17. The figures show that the errors strongly 
depend on the parameters y and m. They increase (or 
become less negative) with increasing value of y; for/~ = 1 
the errors are always positive. For m = 0, the errors are 
zero (see equations (50)-(51)) and with increasing m, the 
dependence on/~ increases. Generally, the errors are the 
smallest for #~0.8.  

For a number of semi-crystalline polymers (HDPE, 
LDPE, PP, PET, Nylon 6 and 12) the # and m values 
can be obtained from Figures 19-24 of ref. 2. We observe 
that, in region 2, the/~ value varies between 0.6 and 0.8 
in most cases; only for HDPE, p falls to 0.5 (Figure 19 
of ref. 2). The m values can be derived from the tan & 
curves of Figures 19-24 of ref. 2, because tan 6 was 
calculated from the creep rate (equation (5) of ref. 2): 

tan 6 = -  n d In J/d In t (52) 
2 
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Using equation (43), we thus find: 

2 
m < tan 

7Z 

Note that parameter m defined by equation (43) has a 
slightly different meaning from the one in ref. 2. 

Inspection of Figures 19-24 of ref. 2 shows that 
tan 6 <0.25. Consequently, m < 0.2. These results imply 
that the data for m = 0.2 in Figures 16 and 17 (thin curves) 
give bounds for the extrapolation errors in most cases. 
Taking t l / t  c = 1, we obtain (maximum) errors between 0 
and 7.5% for a=100 and between - 1  and +14% for 
a=1000.This explains why the linear extrapolation 
method works reasonably well for semi-crystalline 
polymers. 

Generally, the errors will be positive, i.e. the F (or J) 
versus log t curves will show a slightly decreasing slope 
(cf. Figures 12, 13 and 14). Interestingly, theory (Figures 
16, 17) predicts a negative error (upward curvature in F 
(or J-) versus log t) for p =0.5. Such a low p value applies 
to HDPE at - 20°C (see Figure 20 of ref. 2), and indeed, 
the long-term creep of HDPE at -20°C shows a slight 
upward curvature (Figure 15). 

Region 3 T L < T < TUg 

We will now show that the methods described in the 
last section can also be used for region 3. As shown in 
ref. 2, the creep in this region can be written as: 

J ( t  e, t ) = J l ( t ) +  J2(t~, t) (53)  
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Creep component J1 refers to the more mobile regions. 
These are above their Tg and no longer sensitive to ageing. 
J2 refers to the less mobile regions which are at or just 
below their T~. 

Comparison with equations (12)-(14) shows that 
equation (53) is a special case of equation (12), namely 
with Pl =0.  Further, if J1(t) can be written as (cf. Figure 
7 of ref. 2): 

Jl(t) = A' + C' In t (54) 

in which A' and C' are independent of te, the formalism 
reduces that of the theory section. It can easily be deduced 
that ageing produces horizontal shifts of the creep curve 
to the right (shift =/~2 ln(tJt=,)),combined with upward 
vertical shifts of magnitude /~2C' ln(t=/t=r). The vertical 
shift rate B defined in reference 2 is again given by 
equation (24), but now with the minus sign replaced by 
a plus sign,/~2 >/A =0  and C' instead of C. 

The long term creep can again be calculated by means 
of equation (35) but now with 22 instead of2~. The errors 
are negative. Using equation (35) we consider creep 
component J~ as being sensitive to ageing. This is 
incorrect (see equation (53)). Therefore the predicted 
value of J will be too low. The error q' is found by 
interchanging 21 and 22 in equation (32); because 21 = t 
(/~1 =0) we obtain: 

q~ = C' ln(t/~.2) (55) 

Because 22 < t (see Table 1), • will be positive. 
The errors are the largest for #2 = 1. In that case the 

relative errors are given by equation (33) with 0~= 1 
(/~ =0). Consequently, (we again use J(t*, t*)<J(t=, t), 
see earlier discussion): 

R< 2 . ~  ln(ln(l +t-/t=) ~ (56) 
\ t/t= /1 

For t/t,= 10, 100 and 1000 the errors are respectively 
-0.63B, - 1.34B and -2.16B. Consequently, as long as 
B is small compared to unity, the errors can be neglected, 
i.e. we can use the same methods as for region 2. 

Inspection of Figures 19-24 of ref. 2 shows that B 
increases to 0.15 for the highest temperatures in region 
3. Thus at these temperatures the errors may become 
large (20% for t/t~ = 100). 

Some experimental results are shown in Fi#ures 18 and 
19. Figure 18 deals with HDPE, quenched to 20°C and 
measured at a t~ of 1 h. The short-time creep curve 
(2-1024 s) is given by open circles. From these data we 
calculated F(t ) -  F(t/2) as a function of time. The results 
are given in the insert in Figure 18. By extrapolating the 
straight line, we found the momentary compliance (thin 
curve) and from this, we finally calculated the long term 
creep. The value of/~ was taken from Figure 19 of ref. 2. 

The curve drawn in Figure 19 of ref. 2 gives ~t=0.65, 
but, in view of the scatter and the strong temperature 
dependence of/~, values of 0.75-0.80 are also possible. 
All these values yield good predictions of the long term 
creep. Even for an extrapolation factor of 1000, the errors 
are less than about 10% (Fi#ure 18). 

Similar results for temperatures other than 20°C are 
given in Figure 19. There the long term creep has been 
calculated with/~ values of 0.65 at 20°C, 0.75 at 30°C, 
0.9 at 40°C, and 1 at 50, 60 and 70°C (cf. Figure 19 of 
ref. 2). At all temperatures, the extrapolation factor 
equals 100, and the errors are less than 5%. 

Figure 19 also shows that in region 3, the (long term) 
creep curves measured at different temperatures cannot 
be superimposed. The double logarithmic slope of the 
creep curves decreases with increasing temperature. This 
inapplicability of time-temperature superposition is quite 
normal for long term creep. Also the short-time creep 
curves cannot be superimposed. This is a typical feature 
of region 3 as was discussed in ref. 2. 

Region 4 T > T~ 
In this region, the ageing effects characteristic of 

regions 1-3, have disappeared. If there are no crystal- 
lization processes, the material will behave as a normal 
polymer above its T~. There are no ageing effects, and 
no differences between momentary and long term corn- 
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Figure 19 Small-strain torsional creep of HDPE (40) 0.5h after 
quenches from 105°C to various temperatures T. The meaning of the 
symbols and curves is the same as in Figure 18. Note that the diagram 
is double-logarithmic 

pliances. Furthermore, the creep curves measured at 
different temperatures can be superimposed by shifting 
in a double-logarithmic diagram. This means that the 
long term creep can be predicted by time-temperature 
superposition of short-time data. 

Experimental data supporting this conclusion are 
shown in Figure 20. The short-time tests (torsional creep) 

lasted 1024 s. The master curves at 20 and 50°C were 
obtained by time-temperature superposition (horizontal 
and vertical shifts in a log J versus log t diagram; the 
arrow denotes the shifting direction). The experimental 
long term creep is indicated by crosses; the extrapolation 
factor a is 100. Obviously, experiment and prediction 
agree reasonably well. 

Some other data on LDPE are shown in Figure 21. 
The curves are the master curves of Figure 20, but now 
for te values of 1 and 24 h. The torsion data (shear) were 
converted to tensile compliances by multiplying J by a 
factor of 1/3 (LDPE is very soft at 20°C; Poisson ratio 
is close to 0.5). Figure 21 also shows experimental long 
term creep (crosses). The agreement is again good. (Note 
that the extrapolation factor is 1000 in Figure 21). In 
view of these results, we conclude that for region 4, 
the long term creep can indeed be obtained by time-- 
temperature superposition. 

In the preceeding discussion on LDPE, we tacitly 
disregarded the fact that LDPE is not insensitive to 
ageing at 20-70°C. As shown in Figure 13 of ref. 2, an 
increase in te effects a downward vertical shift of the creep 
curve (at 40°C about -10%/decade).  The horizontal 
shifts, however, are small. The same results have been 
reported earlier (see, for example, ref. 11). In ref. 2, we 
suggested that this effect can be explained from secondary 
crystallization (see Figure 8 and page 1532 of ref. 2). 

We will now give a tentative explanation for the fact 
that such crystallization effects (downward shifts) do not 
disturb the prediction method. We start from the very 
crude model depicted in Figure 22. Suppose that the creep 
is due to interlamellar shear 12 of the soft amorphous 
layer which has a compliance ~b(t). Assume further that 
the layer thickness l slowly decreases with the time t= 
after quenching, but that the creep compliance ~b(t) of 
the amorphous layer is insensitive to re. Assume finally 
that l decreases linearly with In t= (this is suggested by 
e.g. the volume relaxation data of Kovacs 13, obtained 
on LDPE as well as by Figure 15 of ref. 2). 
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curve of Figure 20 (but now at values of tc of 1 and 24h),  converted 
to tensile compliances by assuming a Poisson ratio of 0.5 

Short-time tests. As long as creep time t<<t,, the 
changes in 1 during testing can be neglected. This implies 
that the short time compliance J(t)  is proportional to 
I(te)(b(t). Thus, the changes in l can be found from the 
changes in the isochronous values of J(t)  with t=. For 
# = 0, vertical shift rate B defined in ref. 2 becomes: 

1 dJ(t) 
B -  (57) 

J(t)  d log t¢ 

Consequently, a rate of - 100B%/decade implies that 

l=  1°( 1 -  B2.303 In t , )  (58) 

where lo is the l value at te = 1 h, whilst te is expressed in 
hours. 

Long term creep. In this case l changes during creep. 
We assume that the transformation of amorphous to 
crystalline material does not produce a change in strain. 
We consider the small time interval between t and 
t' = At + t. Between t and t', the thickness of the amorphous 
layer decreases from l and l '<  I. Due to the assumption 
made above, this decrease in thickness does not produce 
any change in strain. So, the change in strain 7 is entirely 
due to the continued creep of the remaining amorphous 
layer: 

~ ( t ' ) -  ~(t) = trol'[qb(t' ) -  ~b(t)] (59a) 

where tro denotes the shear stress over the layer. Taking 
the limit of At = t' - t --, 0, we find: 

~(t) = ~rol(t)(b(t ) (59b) 

in which a dot denotes differentiation with respect to 
time t. Since the materials compliance J(t)  is supposed 
to he proportional to 7(t)/o" o we find from equation (59b): 

J(t)  = kl(t)~(t) (59c) 

in which k is a proportionality constant. 
At (loading) time t, the time elapsed after quenching 

has increased from to (moment of loading) to te + t. 
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Figure 22 Model for explaining the smallness of the effect of secondary crystallization on the 
long term creep. For details see text 

Therefore: 

l ( t ) = l , o [ 1 - 2 . ~ l n ( l + t / t ~ )  1 (60) 

Let us compare J(t) with the compliance J*(t) that would 
be obtained when l remained constant and equal to l,o. 
We have: 

J*(t) = kl,ec~(t ) > J(t) = kl(t)4)(t) (61) 

Combining equations (59)--(60) we obtain: 

J*( t ) -J( t )  = (klteB/2.303)ln(1 + t/te)~(t) (62) 

Dividing by J*(t) and changing to In t derivatives we find: 

1 d [ J *  - J ]  B d In 4~ 
- In(1 + t/te) - -  (63) 

J* dln  t 2.303 dln t 

Because of equation (61), d ln~b/dlnt  is equal to 
d In J*/d In t. 

By writing m for this double logarithmic rate, we find: 

1 d [ J * -  J ]  Bm 
- In(1 + tits) (64) 

J* d l n t  2.303 

Parameters B and m can be estimated from the 
experimental data. From Figure 20 of ref. 2 we obtain a 
B value of -0 .09  at 20°C (9%/decade). Slope m can be 
determined from Fiyure 20 of the present paper. In the 
flat long time part, J shows a slope of about 10%/decade, 
i.e. m = 0.1/2.303 = 0.043. Consequently, Bm/2.303 equals 
0.0017 and for t<3OOt~ (see Figures 20 and 21), we 
obtain: 

1 d [ J * - J ]  
<0.01 (65) 

J* d In t 

We thus find that the slopes of J*(t) and J(t) versus 
In t do not differ by more than 1%. For t << t e, J* and J 
are equal. Let us say that J * = J  for t=0.1t~. Since 
t < 300re, this implies that the variation in In t is limited 
to a factor In 3000=8. So, the differences between J* 
and J will be less than 8%. 

The physical meaning of this result is easily understood. 
If m is small, the major part of the deformation is built 
up during the earlier stages of creep, i.e. for t < t~. For 
t > t¢, the stress on the rubbery amorphous material as 
well as the properties of the rubber remain constant. 
Therefore the crystallization process does not change the 
deformation built up for t < re; it only reduces the rate of 
creep for t > t¢. Consequently, the differences between the 
two compliances will be proportional to the product of 
m and B. If m were zero, the differences would also be 
zero. 

DISCUSSION 

The previous sections have indicated how the long term 
creep of semi-crystalline polymers can be predicted from 
short-time tests. In region 1, we can apply the methods 
developed for amorphous polymers (the effective time 
method, or the linear extrapolation method). In regions 
2 and 3 we can use the modified effective time method, 
or again a linear extrapolation method, and in region 4 
we can apply time-temperature superposition. 

One remark, however, should be made. Just as for 
amorphous polymers we have now demonstrated the 
accuracy of the prediction methods on our laboratory 
time scale of 1000h. For amorphous polymers we could 
safely conclude (page 127 of ref. 1) that, because the 
method correctly predicts the 1000h behaviour from a 
1 h test, it will equally well predict the behaviour over 
10Sh (10 years) from a test of 100h. For crystalline 
polymers, such a conclusion is less certain. 

The reasons for this become clear when we consider 
the behaviour of PE. Its ~ peak has a rather low activation 
energy, and therefore, the transition to region 4 may 
rapidly shift to lower temperatures with increasing creep 
time. So, it is not certain whether the creep of, for 
example, HDPE at 20°C which is of type 3 at short times, 
will remain of type 3 for times of the order of years. The 
behaviour may change to type 4, and this may upset the 
predictions, although in such cases, the actual creep will 
be less than predicted, i.e. the prediction will be on the 
safe side. Clearly, these points have yet to be clarified by 
very long creep tests. A more detailed discussion of this 
problem is given in reference 14. 

CONCLUSION 

The methods for predicting long term creep from tests 
of short duration, previously developed for amorphous 
polymers, can also be used in a slightly modified form 
for semi-crystalline polymers. 
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